Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study.
نویسندگان
چکیده
We explore the mechanism of synchronized bursting activity with frequency of approximately 10 Hz that appears in cortical tissues at low extracellular magnesium concentration [Mg2+]o. We hypothesize that this activity is persistent, namely coexists with the quiescent state and depends on slow N-methyl-D-aspartate (NMDA) conductances. To explore this hypothesis, we construct and investigate a conductance-based model of excitatory cortical networks. Population bursting activity can persist for physiological values of the NMDA decay time constant (approximately 100 ms). Neurons are synchronized at the time scale of bursts but not of single spikes. A reduced model of a cell coupled to itself can encompass most of this highly synchronized network behavior and is analyzed using the fast-slow method. Synchronized bursts appear for intermediate values of the NMDA conductance g(NMDA) if NMDA conductances are not too fast. Regular spiking activity appears for larger g(NMDA). If the single cell is a conditional burster, persistent synchronized bursts become more robust. Weakly synchronized states appear for zero AMPA conductance g(AMPA). Enhancing g(AMPA) increases both synchrony and the number of spikes within bursts and decreases the bursting frequency. Too strong g(AMPA), however, prevents the activity because it enhances neuronal intrinsic adaptation. When [Mg2+]o is increased, higher g(NMDA) values are needed to maintain bursting activity. Bursting frequency decreases with [Mg2+]o, and the network is silent with physiological [Mg2+]o. Inhibition weakly decreases the bursting frequency if inhibitory cells receive enough NMDA-mediated excitation. This study explains the importance of conditional bursters in layer V in supporting epileptiform activity at low [Mg2+]o.
منابع مشابه
The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons.
The characteristics and mechanisms of synchronized firing in developing networks of cultured cortical neurons were studied using multisite recording through planar electrode arrays (PEAs). With maturation of the network (from 3 to 40 d after plating), the frequency and propagation velocity of bursts increased markedly (approximately from 0.01 to 0.5 Hz and from 5 to 100 mm/sec, respectively), a...
متن کاملNMDA receptor-mediated epileptiform persistent activity requires calcium release from intracellular stores in prefrontal neurons.
Various normal and pathological forms of synchronized population activity are generated by recurrent excitation among pyramidal neurons in the neocortex. However, the intracellular signaling mechanisms underlying this activity remain poorly understood. In this study, we have examined the cellular properties of synchronized epileptiform activity in the prefrontal cortex with particular emphasis ...
متن کاملPhase-dependent stimulation effects on bursting activity in a neural network cortical simulation.
PURPOSE A neural network simulation with realistic cortical architecture has been used to study synchronized bursting as a seizure representation. This model has the property that bursting epochs arise and cease spontaneously, and bursting epochs can be induced by external stimulation. We have used this simulation to study the time-frequency properties of the evolving bursting activity, as well...
متن کاملGamma Rhythmic Bursts: Coherence Control in Networks of Cortical Pyramidal Neurons
Much evidence indicates that synchronized gamma-frequency (20-70 Hz) oscillation plays a significant functional role in the neocortex and hippocampus. Chattering neuron is a possible neocortical pacemaker for the gamma oscillation. Based on our recent model of chattering neurons, here we study how gamma-frequency bursting is synchronized in a network of these neurons. Using a phase oscillator d...
متن کاملEffect of Mg2+ on neural activity of rat cortical and hippocampal neurons in vitro.
Mg2+ plays an important role in biological functions, similar to that of Ca2+. In terms of neural activity, it is well known that Mg2+ blocks the NMDA receptor. However, the relationship between Mg2+ and neural function has not been well understood. We have investigated the effect of low extracellular Mg2+ concentration ([Mg2+]o) on neural activity in rat cortical and hippocampal neurons by usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 95 2 شماره
صفحات -
تاریخ انتشار 2006